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The optical theorem requires that the anti-Hermitian part of the T matrix have positive diagonal elements 
in any representation. The condition for this is that the anti-Hermitian part be a positive Hermitian matrix; 
this imposes restrictions in the form of inequalities, which involve off-diagonal as well as diagonal elements 
of the matrix in any particular representation. Specific results are derived for "spin-flip" amplitudes in 
the case where particles have spins ( i , i ) , (1,1), and (1,1). Application to reaction amplitudes is also briefly 
discussed. 

INTRODUCTION 

IN general, neither the total spin angular momentum, 
its projection on a given axis, nor the projections of 

the spins of the individual particles of a physical system 
are constants of̂ the motion. If one considers the forward 
elastic scattering of one particle by another there will 
then exist several amplitudes describing the scattering 
associated with the various spin configurations of the 
initial and final states. In particular, we may use a 
barycentric reference frame in which the momentum 
p of the first particle lies along the % axis and use this 
direction for the direction of spin quantization. Let us 
designate the spin of the first particle by A and its z 
projection by a, the spin of the second by B and its % 
projection by b. In a representation in which the spin 
projections are diagonal, the various forward elastic-
scattering amplitudes can then be written as a matrix / 
with elements (a'V \ f\ ab), where a, b are the projections 
in the initial state and a', b! the projections in the final 
state. In general, this matrix is neither diagonal nor 
diagonalizable. The optical theorem tells us, however, 
that if we split / into its Hermitian and anti-Hermitian 
parts, f=g+ih, then the diagonal elements of h are 
positive: 

(ab\h\ab)^0. (1) 

Instead of labeling the initial and final states by the 
individual spin projections, we could label them by the 
total spins C and Cf and total spin projections c and cf 

of the initial and final states, respectively. In this repre­
sentation, which is unitarily related to the preceding 
one, the matrix / would have elements (CV | f\ Cc), 
and the optical theorem would require 

(Cc\h\Cc)20. (2) 

Conditions (1) and (2) are not necessarily equivalent 
since the matrix element (Cc \ h j Cc) involves off-diagonal 
as well as diagonal matrix elements {afbf | h \ ab). 

It is therefore natural to inquire what are the strongest 
conditions imposed by the optical theorem on the matrix 
elements of h in any given representation. The answer is 
simply that the associated Hermitian form shall be posi­
tive, which in turn requires that the determinant of h 
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and all principal minors of this determinant (which are 
necessarily real) be positive.1 What is essentially in­
volved here is the following: The positiveness conditions 
on the diagonal matrix elements of h are in general 
representation-dependent. They take their most strin­
gent form, however, in that representation in which h is 
diagonal, and when they are imposed in that representa­
tion they take the above form in any other representa­
tion. The resultant inequalities then impose limitations 
on the magnitude of off-diagonal ("spin-flip") ampli­
tudes in such representations. 

In certain representations, including the two described 
above, invariance under rotations and under time re­
versal lead to the condition that / i s a symmetric matrix, 
whereupon h is a real symmetric matrix. In such cases 
the inequalities are then conditions on the imaginary 
parts of the matrix elements of / . 

In the following sections, we apply these results to 
the cases where (A,B)—(^,\), (|,1), (1,1)—these being 
the simplest nontrivial cases, in both the (ab) and (Cc) 
representations. To keep the results simple, we shall 
assume that the system is invariant under rotations, 
space inversion, and time reversal, since these circum­
stances severely limit the number of independent matrix 
elements of /. 

THE INDIVIDUAL SPIN REPRESENTATION 

In the (ab) representation in which initial and final 
spin states are labeled by the spin projections of the 
individual particles in the direction of p, time-reversal 
invariance and rotational invariance impose the follow­
ing conditions on the matrix elements: 

(ab\f\afV)-(afbf\f\ab), 
(a'bf\f\ab) = 0 unless a'+b'=a+b, 

while invariance under space inversion yields the further 
conditions 

(~a'-b'\f\-a-b)=(a'b'\f\ab). 

For simplicity of typography we use Greek letters to 
label the nonzero (real) elements of the h matrix, but 
it should be noted that the same Greek letter refers to 
different matrix elements in the different special cases. 

1 See, for example, I. M. Gel'fand, Lectures on Linear Algebra 
(Interscience Publishers, Inc., New York, 1961), p. 68. 
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AN APPLICATION 

To explore the question as to whether the inequalities 
obtained by this very trivial argument are in fact of a 
trivially obvious character, we consider their applica­
tion to a hypothetical situation involving change of 
polarization on scattering in the forward direction. We 
consider only the case of spin-| particles in order to 
avoid the complication of description involved for polari­
zation of higher spins. Denoting the polarization of the 
incident beam of spin-J particles by Po and that of the 
target of spin-§ particles by Pt (the axis again being the 
direction of p), we may calculate the final polarization 
Pf by using matrix of Fig. 1 (a) in the form 

Pf=(p*Po-y2Pt)/(P2+y2), 

if we assume that the / matrix is pure imaginary. Ap­
plying the inequality (3) tells us that Pf lies between 
%(Po—Pt) and Po. Thus, for an unpolarized target, P / 
lies between | P 0 and Po. One can similarly show, by the 
use of the matrix in Fig. 1(b), that for spin-§ particles 
incident on an unpolarized spin-1 target, P / will lie 
between %Po and Po. If the /mat r ix were not pure imagi­
nary, or if the inequality (3) did not hold, P / could lie 
anywhere between P 0 and —Pt in the first instance, or 
between — | P 0 and Po in the second. Thus, these re­
strictions are not entirely of a trivial character. 

GENERALIZATIONS 

We have restricted our discussion so far to the par­
ticular case of elastic scattering with the possibility of 
spin flip, but the simple technique which is employed 
admits of a great variety of generalizations to other situ­
ations. I t can, in fact, be applied to any (finite2) sub-
matrix of the T matrix obtained by limiting the initial 
(and final) states to a (finite) subset. We illustrate with 
some examples. 

Consider first elastic scattering of spinless particles. 
Let the initial momentum of one particle in the bary-
centric reference frame be p and the final momentum be 
p'. If we restrict p and p ' to a finite set of momenta 
Pi, P2, • • • Pn, all of the same magnitude, then the matrix 
(Py|r |p*) is a finite matrix of n rows and columns 
whose anti-Hermitian part must have positive-diagonal 
elements by the optical theorem. Application of the 
technique above then yields a set of inequalities satisfied 
by the matrix elements, which, in the case of rotational 
invariance, impose conditions on the imaginary part 
of the scattering amplitude at the angles defined by the 
initially selected set of momenta. Of course, in this case, 
since the T matrix can be immediately diagonalized by 
using a partial-wave expansion, the information ob-

2 The same methods can be applied to infinite matrices, but yield 
then the same information as is obtained from the totality of condi­
tions derived from all its finite submatrices. 

tained can be no more than one obtains from the fact 
that the imaginary part of each phase shift is positive. 

However, if the particles have spin and the initial 
and final states are specified not only by the momentum 
of one particle but by the helicities of the particles as 
well, then a complete diagonalization is no longer trivally 
possible without knowledge of the dynamics of the situa­
tion, and the information then obtained is no longer so 
trivial. 

As a second example, consider the reactions 

ir+N 

K+k WAJ ' 
where the pion has momentum p in the barycentric 
frame and the kaon has momentum p' in this frame. 
Limiting oneself to one substate of the / = § isospin 
state, and neglecting the ordinary spin of the baryon 
for the sake of the present argument, the T matrix 
within this subspace is a 2X2 matrix whose anti-
Hermitian part can be written as 

(TTAO 

(KA) 

(TN) (KA) 
7 

The elements a and 0 are then related to the total cross 
sections for TC—N scattering and K—A scattering, while 
7 is the imaginary part of the transition amplitude 
ir+N —» i£+A, with T and K having the specified mo­
menta. The inequality 

GtP-y2Z0, 

would then set a lower bound on the K—A total cross 
section (which is not directly measureable) at the given 
energy if one had knowledge of the imaginary part of 
the transition amplitude and the total TT—N cross 
section, both of which are in principle, at least, measure-
able. Numerous other examples involving many open 
channels can obviously be constructed. 

As in the earlier example, practical application of 
these inequalities is severely limited by the fact that 
they apply only to a part (the anti-Hermitian, or in 
some cases, imaginary part) of the T matrix. This makes 
them difficult to apply profitably in a direct way to 
experimental results, but it is possible that they have 
useful applications to theory, especially in combination 
with other information such as that contained in dis­
persion relations. 
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